Nitrogen and phosphorus effects on growth, and yield of black-eyed bean (Vigna unguiculata L.)

WA Seerat1, R Nazir1*, H Nimgriti, M Yahyazai1 and K Khaleeq1

Summary

The combination of nitrogen and phosphorous plays a vital role in increasing the productivity of black-eyed bean. Therefore, a study was carried out at the Research Farm of Afghanistan National Agriculture Sciences and Technology University (ANASTU), Kandahar, Afghanistan during the spring of 2020 to evaluate the effect of nitrogen (N) and phosphorus (P) doses on the growth, yield and economics of black-eyed bean (Vigna unguiculata L.). The treatment consists of four levels of nitrogen (0, 20, 30 and 40 kg ha⁻¹) in main plots and four levels of phosphorus (0, 30, 60 and 90 kg ha⁻¹) in a sub-plot laid out in a split-plot design and replicated thrice. The plant height, LAI and dry matter accumulation in blacked-eye bean was significantly affected by N and P doses. The grain yield, biological yield and net return of black-eyed bean were significantly higher with the application of 30 kg N ha⁻¹ in combination with 60 kg P₂O₅ ha⁻¹ in the sandy clay loam soil of Kandahar, Afghanistan.

Introduction

Afghanistan is an agrarian-based economy where wheat, rice, maize and pulses are major field crops. In developing countries like Afghanistan where protein malnutrition poses a serious challenge due to cereal-based dietary patterns, the inclusion of pulses into the staple diet could help in overcoming the crisis of malnourishment. Further, the protein obtained from pulses is comparatively cheaper than animal-based protein sources i.e., meat, egg and fish, owing to the low market prices of pulses. Pulses are an important source of proteins, vitamins and minerals for the predominantly vegetarian population and are popularly known as "Poor man's meat" and "rich man's vegetable" (Singh & Singh 1992, Bana et al. 2022; Haldhar et al. 2023). Globally, the black-eyed bean is cultivated in an area of 14.91 million hectares with a yield of 0.60 tons ha⁻¹ and a total production of 8.99 million tons (FAOSTAT 2021). However, the cultivated area and production of pulses in Afghanistan are very low with only 77466 ha and 42417.3 tonnes, respectively with an average productivity of 0.54 tonnes ha⁻¹ (FAOSTAT 2021). Black-eyed bean is mostly grown in the spring season and warmer regions of the country like Kunduz, Helmand, Kandahar, Nangarhar, Parwan, Laghman, Takhar, Herat and Kapisa provinces (Babazoi 2018 & Khaleeq et al. 2023a). So, there is a massive scope to improve its cultivation in Afghanistan for which the supplement of nutrient elements viz., nitrogen (N) and phosphorous (P) in proper doses is of paramount importance. Phosphorus is the most needed element for crop production in many tropical soils due to its deficiency in this type of soil. Legumes are phosphorus-loving plants and they require phosphorus for their optimum growth and seed development most especially in N-fixation which is an energy-driving process. Application of phosphorus is therefore recommended for black-eyed bean production on soils low in phosphorus. P not only enhances root growth but also promotes early plant maturity. Cowpea is a short-duration crop that often suffers from P deficiency during its growth stages. Similarly, in cowpea N application plays an important role a dose of 20 kg nitrogen ha⁻¹ was more than sufficient for vegetative growth (Nazir et al. 2022; Musa et al. 2021).

Methods and Materials

A field experiment was carried out in the spring season of 2020 at Afghanistan National Agricultural Sciences and Technology University, Kandahar, Afghanistan. The experimental field was located at 31º 30' -31º 61' latitude and 65º 42' - 65º 71' E longitude. The mean maximum and minimum temperatures during the growing period were 36.33 and 14.53 ºC, respectively. The wind speed during the growing period ranged between 10.49 to 18.05 km per hour. Moreover, the maximum and minimum relative humidity was recorded at 53.86% and 18.38%, respectively. The total rainfall received during the growing season was only 33.79 mm with the maturity period coinciding with no rainfall. The treatments consisted of four levels of nitrogen (0, 20, 30 and 40 kg ha⁻¹) in main plots and four levels of phosphorus (0, 30, 60 and 90 kg ha⁻¹) in sub-plots combined to practice sixteen treatments combination which were laid out in a split-plot design and replicated thrice. The source of nitrogen was urea and that of phosphorus was triple super phosphate and these fertilizers were applied in each plot as per treatment to the crop. The total amount of Triple Super Phosphate (TSP) was applied to plots as basal, while urea was applied in three equal splits as basal, 25 DAS and at flowering stages, besides these fertilizers, 20 kg K₂O ha⁻¹ was applied as basal dose

1Afghanistan National Agricultural Sciences and Technology University (ANASTU)
2Corresponding author: R Nazir, E-mail: r.nazir@anastu.edu.af

*JAE 2023, Vol 17
Accepted: 23 December 2023
Published: 31 December 2023
https://doi.org/10.5862/JAE-2317-318

Keywords: Black-eyed bean, Economics, Growth, Yield
uniformly to all plots. The Black-eyed bean variety (Chesham bulbul) seeds were evenly dried and sown by line sowing, with a spacing of 30 cm between line to line and 15 cm between plant to plant. The plant height, leaf area and dry matter accumulation were recorded using standard procedure. The grain and straw yield of each plot were recorded and the final yield was expressed in kg ha⁻¹. The economics of Black-eyed bean viz., cost of cultivation (Afghani ha⁻¹), net returns (Afghani ha⁻¹) and benefit: cost ratio was calculated using standard procedure and formula.

Result and Discussion
The result showed that significantly higher plant height of black-eyed bean was recorded with the application of 30 kg N ha⁻¹ at 30, 60, 90 DAS and harvest. Conversely, the black-eyed bean does not require too much nitrogen fertilizer as it fixes its nitrogen from the air using the nodules in its roots and extra N application might lead to luxuriant growth in pulses. As well, Nitrogen levels had a significant effect on leaf area cm² plant⁻¹ at 30, 60 and 90 DAS. At 30 and 60 DAS, a significantly higher leaf area was recorded with the application of 30 kg N ha⁻¹ but at 90 DAS, the highest leaf area was obtained with the application of 40 kg N ha⁻¹. Increases in plant height and leaf area index might be due to nitrogen playing a key role in crop canopy development which is crucial for light interception, CO₂ fixation and dry matter production. These results are in close conformity with the findings of (Raghueer et al. 2017). Significantly higher plant dry matter accumulation (g plant⁻¹) was recorded with the application of 30 kg N ha⁻¹ at all growth stages. This might be due to nitrogen accelerated growth in terms of higher plant height, a greater number of leaves plant⁻¹ and a greater number of branches plant⁻¹. Further, nitrogen application increased the photosynthetic efficiency of leaves and thus increased availability of photosynthates for better growth of crops might have resulted in an overall increase in dry matter production. The results are in line with those (Meena & Chand. 2014; Samim et al. 2023 & Gul Agha et al. 2023). Different phosphorus levels had a significant influence on the plant height of black-eyed bean at 30, 60, 90 DAS and harvest and in this study, the result showed that significantly higher plant height was recorded with the application of 60 kg P₂O₅ ha⁻¹, where it remained at par with 90 kg P₂O₅ ha⁻¹. The different levels of phosphorus application had a significant effect on leaf area at 60 and 90 DAS but at 30 DAS were found to be non-significant. The highest leaf area cm² plant⁻¹ at 30 and 60 DAS was recorded with the application of 60 kg P₂O₅ ha⁻¹. Similarly, the application of 60 kg P₂O₅ ha⁻¹ recorded significantly the highest dry matter accumulation of black-eyed beans at all stages of crop growth. Phosphorus effects on plant height, leaf area index and plant dry matter accumulation might be due to the crucial role phosphorus plays in root development and physiological processes of protein synthesis, similarly, phosphorus plays an important role in energy transfer in plants, causing rapid cell division and cell elongation in the meristematic region of the plant, the result of the study was in a close agreement with those reported by (Nkaa et al. 2014; Balai et al. 2017; Namakka 2017; Ehsan et al. 2017; Baboo & Mishra 2001).

The result revealed that grain yield and biological yield were significantly affected by different levels of nitrogen. Application of 30 kg N ha⁻¹ produced significantly highest grain yield (2909 kg ha⁻¹) and biological yield (7987 kg ha⁻¹) of black-eyed bean, Treatment without nitrogen application N₀ produced significantly lowest grain yield (2506 kg ha⁻¹) and biological yield (7024 kg ha⁻¹). The increase in grain yield of black-eyed bean due to application of N₉₀, N₆₀ and N₄₀ over N₀ was 10.0, 16.1 and 13.4 percent, respectively. The increase in biological yield of black-eyed bean due to the application of N₉₀, N₆₀ and N₄₀ over N₀ was 9.9, 13.7 and 12.4 per cent, respectively, it might be due to that the optimum supply of N plays a vital role in alleviating nutritional deficiency in plants, particularly at the reproductive phase which resulted in producing a greater number of pods per plant, grains per pod and finally higher grain yield (Mishra 2003 & Lal 2004). The result revealed that application of phosphorus at the rate of 60 kg P₂O₅ ha⁻¹ recorded significantly highest grain yield (2883 kg ha⁻¹) which was statistically at par with two other P levels of P₉₀ and P₃₀, the highest biological yield of black-eyed bean was recorded under application of 30 kg P₂O₅ ha⁻¹ (8009 kg ha⁻¹), which was at par with two other P levels of 60 kg P₂O₅ ha⁻¹ (7864 kg ha⁻¹) and 90 kg P₂O₅ ha⁻¹ (7478 kg ha⁻¹), it might be due to phosphorus seeming to produce and retain photosynthetic activity, uptake of other nutrients, reproductive activity and photosynthetic translocation from source to sink. A similar trend of results was reported by (Majumdar et al. 2004; Vikrant et al. 2005; Singh et al. 2006). The interaction effects of phosphorus and nitrogen on yield were significant in the present investigation (Fig.1), the highest grain and biological yield was obtained from N₀₆P₉₀ (40 kg N ha⁻¹ and 30 kg P₂O₅ ha⁻¹), which remained at par with the treatment combination of N₉₀P₉₀.

The cost of cultivation is largely dependent on the amount of nutrients applied and their price in the market. The result showed that the maximum cost of cultivation (38829 AFN ha⁻¹) occurred in the treatment 40 kg N ha⁻¹ followed by 30 and 20 kg ha⁻¹ and the least (35789 AFN ha⁻¹) in the N₀ treatment. Data about net return showed that application of 30 kg N ha⁻¹ was recorded higher (230×10⁵ AFN ha⁻¹) which was significantly superior to over control and 20 kg N ha⁻¹ however, it was closely at par with 40 kg N ha⁻¹. The maximum B: C ratio (3.99) was obtained with the application of 30 kg N ha⁻¹ which remained at par with N₄₀ and statically superior to over control and N₀. The cost of cultivation is largely dependent on the amount of nutrients applied and their price in the market. The result showed that the maximum cost of cultivation (38829 AFN ha⁻¹) occurred in the treatment 40 kg N ha⁻¹ followed by 30 and 20 kg ha⁻¹ and the least (35789 AFN ha⁻¹) in the N₀ treatment. Data about net return showed that application of 30 kg N ha⁻¹ was recorded higher (230×10⁵ AFN ha⁻¹) which was significantly superior to over control and 20 kg N ha⁻¹ however, it was closely at par with 40 kg N ha⁻¹. The maximum B: C ratio (3.99) was obtained with the application of 30 kg N ha⁻¹ which remained at par with N₄₀ and statically superior to over control and N₀.

Based on different phosphorus levels, the result showed that the maximum cost of cultivation (45345 AFN ha⁻¹) was obtained with the application of 90 kg P₂O₅ kg ha⁻¹ followed by 60 and 30 kg ha⁻¹ and least (29655 AFN ha⁻¹) in P₀ treatment. Data revealed that the application of 30 kg P ha⁻¹ obtained maximum net returns (228×10⁵ AFN ha⁻¹) and it was found closely at par with the rest of the phosphorus treatments. The respect of B: C ratio was observed maximum with the P₀ level and it was found closely at par with the control and P₆₀ levels.
Whenever P_{30} level of phosphorus was significantly superior to over P_{90}.

Figure 1. Interaction effects of different nitrogen and phosphorus levels on grain and biological yield of black-eyed bean

Table 1. Effect of different nitrogen and phosphorus levels on plant height, leaf area and dry matter accumulation in black-eyed bean at various growth stages

<table>
<thead>
<tr>
<th>Treatment</th>
<th>30 DAS</th>
<th>60 DAS</th>
<th>90 DAS</th>
<th>At harvest</th>
<th>30 DAS</th>
<th>60 DAS</th>
<th>90 DAS</th>
<th>At harvest</th>
<th>30 DAS</th>
<th>60 DAS</th>
<th>90 DAS</th>
<th>At harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{0}: 0</td>
<td>3.71</td>
<td>20.36</td>
<td>35.64</td>
<td>40.15</td>
<td>19.0</td>
<td>687</td>
<td>820</td>
<td>0.33</td>
<td>9.03</td>
<td>18.73</td>
<td>34.70</td>
<td></td>
</tr>
<tr>
<td>N_{1}: 20</td>
<td>3.85</td>
<td>21.54</td>
<td>36.31</td>
<td>42.43</td>
<td>19.4</td>
<td>703</td>
<td>839</td>
<td>0.35</td>
<td>9.58</td>
<td>20.88</td>
<td>36.91</td>
<td></td>
</tr>
<tr>
<td>N_{2}: 30</td>
<td>3.98</td>
<td>21.68</td>
<td>37.86</td>
<td>42.98</td>
<td>20.7</td>
<td>726</td>
<td>860</td>
<td>0.41</td>
<td>10.72</td>
<td>24.51</td>
<td>39.20</td>
<td></td>
</tr>
<tr>
<td>N_{3}: 40</td>
<td>3.92</td>
<td>21.63</td>
<td>36.75</td>
<td>42.57</td>
<td>19.2</td>
<td>719</td>
<td>911</td>
<td>0.33</td>
<td>9.54</td>
<td>20.60</td>
<td>39.06</td>
<td></td>
</tr>
<tr>
<td>SEm±</td>
<td>0.028</td>
<td>0.13</td>
<td>0.25</td>
<td>0.27</td>
<td>0.20</td>
<td>5.95</td>
<td>9.92</td>
<td>0.004</td>
<td>0.068</td>
<td>0.184</td>
<td>0.331</td>
<td></td>
</tr>
<tr>
<td>LSD (P=0.05)</td>
<td>0.081</td>
<td>0.37</td>
<td>0.73</td>
<td>0.79</td>
<td>0.57</td>
<td>17.17</td>
<td>28.65</td>
<td>0.011</td>
<td>0.196</td>
<td>0.530</td>
<td>0.956</td>
<td></td>
</tr>
</tbody>
</table>

Phosphorus application rates kg ha\(^{-1}\)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>30 DAS</th>
<th>60 DAS</th>
<th>90 DAS</th>
<th>At harvest</th>
<th>30 DAS</th>
<th>60 DAS</th>
<th>90 DAS</th>
<th>At harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{0}: 0</td>
<td>3.75</td>
<td>20.65</td>
<td>34.64</td>
<td>40.84</td>
<td>19.5</td>
<td>678</td>
<td>802</td>
<td>0.34</td>
</tr>
<tr>
<td>P_{1}: 20</td>
<td>3.87</td>
<td>21.21</td>
<td>36.53</td>
<td>42.40</td>
<td>19.7</td>
<td>727</td>
<td>896</td>
<td>0.38</td>
</tr>
<tr>
<td>P_{2}: 30</td>
<td>3.96</td>
<td>21.68</td>
<td>37.77</td>
<td>42.90</td>
<td>20.1</td>
<td>741</td>
<td>874</td>
<td>0.35</td>
</tr>
<tr>
<td>P_{3}: 40</td>
<td>3.88</td>
<td>21.67</td>
<td>36.71</td>
<td>41.98</td>
<td>19.1</td>
<td>688</td>
<td>857</td>
<td>0.34</td>
</tr>
<tr>
<td>SEm±</td>
<td>0.069</td>
<td>0.31</td>
<td>0.62</td>
<td>0.67</td>
<td>0.48</td>
<td>14.56</td>
<td>24.30</td>
<td>0.010</td>
</tr>
<tr>
<td>LSD (P=0.05)</td>
<td>0.199</td>
<td>0.91</td>
<td>1.79</td>
<td>1.93</td>
<td>NS</td>
<td>42.06</td>
<td>70.19</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Table 2. Effect of different nitrogen and phosphorus levels on yield components and economics of black-eyed bean

Conclusion

The results indicate that the interaction effects of different nitrogen and phosphorus levels on the growth and yield of black-eyed bean are significant. The application of nitrogen at 30 kg ha\(^{-1}\) and phosphorus at 30 kg ha\(^{-1}\) is recommended for maximum grain and biological yields, as well as for dry matter accumulation. The SEm± values and LSD (P=0.05) values confirm the significance of the differences observed. The B: C ratio values show that the economic returns are highest at the highest levels of nitrogen and phosphorus application.
Best on the result it can be concluded that the application of 30 kg nitrogen per hectare along with 60 kg P₂O₅ per hectare could be the best nutrient levels and optimum for growth, and yield attributes. However, in respect of net return and B : C ratio 30 kg nitrogen per hectare along with 30 kg P₂O₅ per hectare could be the best N, P levels of Black-eyed bean in the semi-arid region of Kandahar, Afghanistan. However, this study was done in a site-specific area for one year and needs to be replicated for more validation and specific findings.

Acknowledgement

I would like to express my sincere thanks to the University of ANASTU for providing the necessary facilities to conduct and complete the current study project.

Declaration of Interests

The authors have no conflict of interest to declare.

Data Sharing

All relevant data are within the manuscript.

References