Microbiological resources- an alternate approach for sustainable management of fall armyworm (Spodoptera frugiperda)

Authors

  • B Sinha Assistant Professor
  • SM Haldhar Associate Professor
  • K Chakrapani Ph D Scholar
  • CN Nidhi Ph D Scholar
  • Z Ralte Student
  • B Wangkhem Student
  • J Konsam Scientist

DOI:

https://doi.org/10.58628/JAE-2317-302

Keywords:

Fall army worm, biological control, bacteria, fungi and virus

Abstract

Fall Army Worm (Spodoptera frugiperda), with the traits of devastating, voracious, polyphagous nature had recently imposed a global threat. Possessing these traits, this pest constituted a threat to global food security by ambushing more than several host plant species. To tackle this pest, insecticide management approaches was used initially. Later, with a better comprehension of the dynamic biology of the pest, such as their long migration capability, their ability to develop resistance against insecticide and the adverse effects of pesticides on human and the environment, an alternative strategy which is environmentally safe i.e., biological control approaches that is effective and low-risk is laid emphasis. A rich diversity of microbial populations which have the ability to infect the pest to a certain degree in nature remains untapped, and if so, identification of high virulence and productive strains within the population is lacking hitherto. This review focused on the information regarding the scenario of the occurring pest and its damaging nature to the host plants and microbial agents with their surplus potentialities along with the mode of interactions with the insect pest and self-perpetuating nature and their boon of disarming nature. The details of each microbe viz., fungi, bacteria and viruses that possess the traits of controlling the pest naturally are briefed with an insight into molecular information, present findings, constraint and future prospects.

Downloads

Download data is not yet available.

Author Biographies

B Sinha, Assistant Professor

College of Agriculture, Central Agricultural University, Imphal, Manipur-795004

SM Haldhar, Associate Professor

College of Agriculture, Central Agricultural University, Imphal, Manipur-795004

K Chakrapani, Ph D Scholar

College of Agriculture, Central Agricultural University, Imphal, Manipur-795004

CN Nidhi, Ph D Scholar

College of Agriculture, Central Agricultural University, Imphal, Manipur-795004

Z Ralte, Student

College of Agriculture, Central Agricultural University, Imphal, Manipur-795004

B Wangkhem, Student

College of Agriculture, Central Agricultural University, Imphal, Manipur-795004

J Konsam, Scientist

College of Agriculture, Central Agricultural University, Imphal, Manipur-795004

References

AgBi Tech. AgBiTech Global Innovation. Harnessing Nature to Control Insect Pests. Available online: https://www.agbitech.com/innovation (accessed on 27 April 2021).

AICC. 2019/20. Agriculture Diary (in Nepali). Agriculture Information and Communication Center, MoALD, Lalitpur.

Asgari S, Bideshi DK, Bigot Y, Federici BA, Cheng XW & Consortium IR. 2017. ICTV virus taxonomy profile: Ascoviridae. The Journal of General Virology. 98 (1): 4. DOI: https://doi.org/10.1099/jgv.0.000677

Bateman ML, Day RK, Luke B, Edgington S, Kuhlmann U & Cock MJ. 2018. Assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda) in Africa. Journal of Applied Entomology, 142(9): 805-819. DOI: https://doi.org/10.1111/jen.12565

Bateman ML, Day RK, Rwomushana I, Subramanian S, Wilson K, Babendreier D & Edgington S. 2021. Updated assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda) in Africa. Journal of Applied Entomology, 145 (5): 384-393. DOI: https://doi.org/10.1111/jen.12856

Bedford GO. 2013. Biology and management of palm dynastid beetles: recent advances. Annual Review of Entomology, 58: 353-372. DOI: https://doi.org/10.1146/annurev-ento-120710-100547

Behle RW & Popham HJ. 2012. Laboratory and field evaluations of the efficacy of a fast-killing baculovirus isolate from Spodoptera frugiperda. Journal of Invertebrate Pathology, 109(2): 194-200. DOI: https://doi.org/10.1016/j.jip.2011.11.002

Bergoin M & Tijssen P. 1998. Biological and molecular properties of densoviruses and their use in protein expression and biological control. In The Insect Viruses. Springer, Boston, MA, 141-169 p. DOI: https://doi.org/10.1007/978-1-4615-5341-0_6

Bezuidenhout SR & Nunkumar A. 2017. Chemical control options for Fall armyworm in maize. Research & Technology Bulletin (2016–2017). Available online: https://www. kzndard. gov. za (accessed on 3 June 2018).

Boaventura D, Buer B, Hamaekers N, Maiwald F & Nauen R. 2021. Toxicological and molecular profiling of insecticide resistance in a Brazilian strain of fall armyworm resistant to Bt Cry1 proteins. Pest Management Science, 77 (8): 3713-3726. DOI: https://doi.org/10.1002/ps.6061

Bohnenblust E & Tooker J. 2012. Fall armyworm as a pest of field corn. Entomological Notes.

CABI. 2019. Spodoptera frugiperda (fall armyworm) Datasheet. Invasive species compendium. https://www.cabi.org/isc/datasheet/29810

Carradore R. 2019. Making viruses more socially acceptable: A sociological framework for virus-based plant protection products. Teorija in praksa, 56(3): 798-814.

Chen X. & Palli SR. 2022. Transgenic overexpression of P450 genes confers deltamethrin resistance in the fall armyworm, Spodoptera frugiperda. J. Pest Sci., 95 (3): 1197-1205. DOI: https://doi.org/10.1007/s10340-021-01452-6

Chen YP, Becnel JJ & Valles SM. 2012. RNA viruses infecting pest insects. Insect Pathology, 133-170. DOI: https://doi.org/10.1016/B978-0-12-384984-7.00005-1

CIMMYT. 2020. New project strengthens capacity to fight fall armyworm in Bangladesh https://www.cimmyt.org/news/new-project-strengthens-capacity-to-fight-fallarmyworm-in-bangladesh/

Cock MJW, Beseh PK, Buddie AG, Cafa G & Crozier J. 2017. Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries, Scientific Reports, 7: 4103. 10.1038/s41598-017-04238-y DOI: https://doi.org/10.1038/s41598-017-04238-y

Crickmore N, Baurn J, Bravo A, Lereclus D, Narva K, Sampson K, Schnepf E, Sun M & Zeigler DR. 2015. Bacillus thuringiensis Toxin Nomenclature. www.btnomenclature.info.

Crop Forecast. 2020. Department of Agriculture, Sri Lanka.

Cuartas-Otalora PE, Gomez-Valderrama JA, Ramos AE, Barrera-Cubillos GP & Villamizar-Rivero LF. 2019. Bio-insecticidal potential of nucleopolyhedrovirus and granulovirus mixtures to control the fall armyworm Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae). Viruses, 11(8): 684. DOI: https://doi.org/10.3390/v11080684

Day R, Abrahams P, Bateman M, Beale T, Clottey V, Cock M, Colmenarez Y, Corniani N, Early R, Godwin J, Gomez J, Moreno PG, Murphy ST, Oppong-Mensah B, Phiri N, Pratt C, Silvestri S & Witt A. 2017. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manage, 28: 196–201. DOI: https://doi.org/10.1564/v28_oct_02

Dos Santos KB, Neves P, Meneguim AM, dos Santos RB, dos Santos WJ, Boas GV, Dumas V, Martins E, Praca LB, Queiroz P, Berry C & Monnerat R. 2009. Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biol Control, 50: 157–163 DOI: https://doi.org/10.1016/j.biocontrol.2009.03.014

Dumas P, Legeai F, Lemaitre C, Scaon E, Orsucci M, Labadie K, Gimenez S, Clamens AL, Henri H, Vavre F, Aury JM, Fournier P, Kergoat GJ & d’Alencon E. 2015. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species? Genetica, 143: 305–316. DOI: https://doi.org/10.1007/s10709-015-9829-2

Eberle KE, Wennman JT, Klespies RG & Jehle J A. 2012. Basic techniques in insect virology, p 15–74. Manual of techniques in invertebrate pathology, 2nd ed. Academic Press, London, UK. DOI: https://doi.org/10.1016/B978-0-12-386899-2.00002-6

FAO. 2018b. Integrated management of the Fall Armyworm on maize. A Guide for Farmer Field Schools in Africa. 127 pp.

FAO. 2018a. Briefing note on FAO actions on fall armyworm. http//www.fao.org/fall armyworm.

Federici BA & Bigot Y. 2008. Ascoviruses. In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, pp. 186–193 DOI: https://doi.org/10.1016/B978-012374410-4.00347-2

Firake DM & Behere GT. 2020. Natural mortality of invasive fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in maize agroecosystems of northeast India. Biological control, 148: 104303. DOI: https://doi.org/10.1016/j.biocontrol.2020.104303

Ganiger PC, Yeshwanth HM, Muralimohan K, Vinay N, Kumar ARV & Chandrashekara K. 2018. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in the maize fields of Karnataka, India. Cur. Sci., 115: 621–623. DOI: https://doi.org/10.18520/cs/v115/i4/621-623

Garcia-Banderas D, Tamayo-Mejia F, Pineda S, de la Rosa JIF, Lasa R, Chavarrieta-Yanez, JM. et al. 2020. Biological characterization of two Spodoptera frugiperda nucleopolyhedrovirus isolates from Mexico and evaluation of one isolate in a small-scale field trial. Biological Control, 149: 104316. DOI: https://doi.org/10.1016/j.biocontrol.2020.104316

Gasque SN, van Oers MM & Ros VI. 2019. Where the baculoviruses lead, the caterpillars follow: baculovirus-induced alterations in caterpillar behaviour. Current Opinion in Insect Science, 33: 30-36. DOI: https://doi.org/10.1016/j.cois.2019.02.008

Ginting S, Zarkani A, Wibowo RH & Sipriyadi. 2020b. New invasive pest, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) attacking corns in Bengkulu, Indonesia. Serangga, 25: 105–117.

Glare TR, Fuentes JJL & O’Callaghan M. 2017. Entomopathogenic Bacteria. Basic and Applied Research, pp47-67. DOI: https://doi.org/10.1016/B978-0-12-803527-6.00004-4

Goergen G, Kumar PL, Sankung SB, Togola A & Tamo M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith)(Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PloS one, 11(10): e0165632. DOI: https://doi.org/10.1371/journal.pone.0165632

Gomez-Valderrama J, Cuartas-Otalora P, Espinel-Correal C, Barrera-Cubillos G & Villamizar-Rivero L. 2022. Fungal and viral entomopathogens as a combined strategy for the biological control of fall armyworm larvae in maize. CABI Agriculture and Bioscience, 3(1): 1-14. DOI: https://doi.org/10.1186/s43170-022-00094-7

Grzywacz D. 2017. Basic and applied research: Baculovirus. In Microbial control of insect and mite pests. Academic Press, pp. 27-46 DOI: https://doi.org/10.1016/B978-0-12-803527-6.00003-2

Haase S, Sciocco-Cap A & Romanowski V. 2015. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses, 7(5): 2230-2267. DOI: https://doi.org/10.3390/v7052230

Haldhar SM, Dutta P, Saha RK, Nagesh M, Selvaraj K & Singh MP. 2020. Biocontrol and Utilization of Insects for NorthEast India Pub: DEE, CAU, Imphal, pp. 296, ISBN: 978-81-938078-3-5

Harrison R L, Herniou EA, Jehle JA, Theilmann DA, Burand JP, Becnel JJ... & Bauchan GR. 2018. ICTV virus taxonomy profile: Baculoviridae., J. Gen. Virol., 99(9): 1185-1186. DOI: https://doi.org/10.1099/jgv.0.001107

Harrison R & Hoover K. 2012. Baculoviruses and other occluded insect viruses. Insect Pathology, 73-131. DOI: https://doi.org/10.1016/B978-0-12-384984-7.00004-X

Helen AP, Tamboli ND, Mre SA & Kulkarni SR. 2021. Bio effoiccay pf bio control agents aginst fall army worm Spodoptera frugipdera (J.E. Smith) under laboratory conditions. J. Entomol. and Zool. Stu., 9 (4): 277-280.

Hernandez-Trejo A, Osorio-Hernandez E, Lopez-Santillan JA, Rios-Velasco C, Varela-Fuentes SE & Rodriguez-Herrera R. 2018. Insectos benéficos asociados al control del gusano cogollero (Spodoptera frugiperda) en el cultivo de maíz (Zea mays L.). Agro productividad, 11(1): 9-145

Hruska, A. J., 2019. Fall armyworm (Spodoptera frugiperda) management by smallholders. CABI Reviews, 1-11. DOI: https://doi.org/10.1079/PAVSNNR201914043

Hussain AG, Wennmann JT, Goergen G, Bryon A & Ros VI. 2021. Viruses of the fall armyworm Spodoptera frugiperda: a review with prospects for biological control. Viruses, 13 (11): 2220. DOI: https://doi.org/10.3390/v13112220

Igyuve T, Ojo G, Ugbaa M & Ochigbo A. 2018. Fall army worm (Spodoptera frugiperda); it’s biology, impact and control on maize production in Nigeria. Nigerian J. Crop Sci., 5: 70-79.

Jones AG, Mason CJ, Felton GW & Hoover K. 2019. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 9(1): 1-11. DOI: https://doi.org/10.1038/s41598-019-39163-9

Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB, Hegbe K, Navi S, Prabhu ST & Goergen GE. 2018. First report of the fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India.

Kansiime MK, Mugambi I, Rwomushana I, Nunda W, Lamontagne-Godwin J & Rware H. 2019. ‘Farmer perception of fall armyworm (Spodoptera frugiderda JE Smith) and farm-level management practices in Zambia’, Pest Management Sci., 75 (10): 2840–2850. 10.1002/ps.5504. DOI: https://doi.org/10.1002/ps.5504

Kumela T, Simiyu J, Sisay B, Likhayo P, Mendesil E, Gohole L & Tefera T. 2019. Farmers' knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. Int. J. Pest Manag, 65 (1).1-9. DOI: https://doi.org/10.1080/09670874.2017.1423129

Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M & Goettel MS. 2015. Insect pathogens as biological control agents: back to the future. Journal of Invertebrate Pathology, 132: 1-41. DOI: https://doi.org/10.1016/j.jip.2015.07.009

Lamsal S, Sibi S & Yadav S. 2020. Fall Army worm In South Asia: Threats and Management, Asian J. Adv. Agric Res. 13 (3): 21-34. DOI: https://doi.org/10.9734/ajaar/2020/v13i330106

Lei C, Yang J, Wang J, Hu J & Sun X. 2020. Molecular and biological characterization of Spodoptera frugiperda multiple nucleopolyhedrovirus field isolate and genotypes from China. Insects, 11(11): 777. DOI: https://doi.org/10.3390/insects11110777

Li Y, Wang Z & Romeis J. 2021. Managing the invasive fall armyworm through biotech crops: A Chinese perspective. Trends in Biotechnology, 39(2): 105-107. DOI: https://doi.org/10.1016/j.tibtech.2020.07.001

Liu HM, Hu X, Wang YL, Yang PY, Shu CL, Zhu XM, Zhang J, Sun GZ, Zhang XM & Li Q. 2019. Screening for Bacillus thuringiensis strains with high toxicity against Spodoptera frugiperda. Chin. J. Biol. Cont., 35: 721–728

Ma H, Galvin TA, Glasner DR, Shaheduzzaman S & Khan AS. 2014. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines. J. Virol., 88 (12): 6576-6585. DOI: https://doi.org/10.1128/JVI.00780-14

Mason CJ, Hoover K & Felton GW. 2021. Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities. Scientific Reports, 11(1): 1-10. DOI: https://doi.org/10.1038/s41598-021-83497-2

Mason CJ, Ray S, Shikano I, Peiffer M, Jones AG, Luthe DS & Felton GW. 2019. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proceedings of the National Academy of Sciences, 116 (32): 15991-15996. DOI: https://doi.org/10.1073/pnas.1908748116

Miller D, O'Reilly D & Dall D. 1999. Insect pest control by viruses. DOI: https://doi.org/10.1006/rwvi.1999.0159

Moscardi F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annual Review of Entomology, 44: 257. DOI: https://doi.org/10.1146/annurev.ento.44.1.257

National Statistics Bureau, Bhutan. 2020. Statistical Yearbook of Bhutan. Thimphu: National Statistical Bureau.

Padhee AK & Prasanna BM. 2019. The emerging threat of Fall Armyworm in India. Indian Farming, 69 (1): 51-54.

Patel PH, Sisodiya DB, Raghunandan BL, Patel NB, Gohel VR & Chavada KM. 2020. Bio-efficacy of entomopathogenic fungi and bacteria against invasive pest Spodoptera frugiperda (J.E. Smith) under laboratory condition. J. Entomol. and Zool. Stu., 8(6): 716-720.

Pidre ML, Sabalette KB, Romanowski V, Ferrelli ML. 2019. Identification of an Argentinean isolate of Spodoptera frugiperda granulovirus. Revistaargentina de microbiología, 51(4): 381-385. DOI: https://doi.org/10.1016/j.ram.2018.10.003

Polanczyk RA, Pires da Silva RF & Fiuza LM. 2000. Effectiveness of Bacillus thuringiensis strains against Spodoptera frugiperda (Lepidoptera: Noctuidae). Braz. J. Microbiol., 31: 165–167. DOI: https://doi.org/10.1590/S1517-83822000000300003

Popham HJ, Nusawardani T & Bonning BC. 2016. Introduction to the use of baculoviruses as biological insecticides. In Baculovirus and insect cell expression protocols (pp. 383-392). Humana Press, New York, NY. DOI: https://doi.org/10.1007/978-1-4939-3043-2_19

Prasad V & Srivastava S. 2016. Insect Viruses. In Ecofriendly Pest Management for Food Security; Academic Press: London, UK; pp. 411–442, ISBN 9780128032664. DOI: https://doi.org/10.1016/B978-0-12-803265-7.00013-0

Prasanna BM, Huesing JE, Eddy R & Peschke VM. 2018. Fall armyworm in Africa: A guide for integrated pest management.https://repository.cimmyt.org/ handle/ 10883/ 19204

Qureshi J & Kostyk BC. 2021. Control of fall armyworm with labeled and experimental biopesticides and insecticides in sweet corn, fall 2020. Arthropod Management Tests, 46 (1): tsab053. DOI: https://doi.org/10.1093/amt/tsab053

Raghunandan BL, Patel NM, Dave HJ & Mehta DM. 2019. Natural occurrence of nucleopolyhedrovirus infecting fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) in Gujarat, India. Journal of Entomology and Zoology Studies, 7(2): 1040-1043.

Rakshit S, Ballal CR, Prasad YG, Sekhar JC, Lakshmi oujanya P, Suby SB, Jat SL, Siva Kumar G & Prasad JV. 2019. Fight against Fall armyworm Spodoptera frugiperda (J. E. Smith). ICAR-Indian Institute of Maize Research, Ludhiana, Punjab, 52 p.

Raymond B, Wright DJ, Crickomore N & Bonsall MB. 2013. The impact of strain diversity and mixed infections on the evolution of resistance to Bacillus thuringiensis. Proc. Roy. Soc. B. Biolo. Sci., 280: 9. DOI: https://doi.org/10.1098/rspb.2013.1497

Ros VID. 2020. Baculoviruses: General Features (Baculoviridae). In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, pp. 739–746. DOI: https://doi.org/10.1016/B978-0-12-809633-8.21549-5

Sajjan DB & Hinchigeri SB. 2016. Structural organization of baculovirus occlusion bodies and protective role of multi layered polyhedron envelope protein. Food and Environmental Virology, 8(1): 86-100. DOI: https://doi.org/10.1007/s12560-016-9227-7

Schroeder L, Mar TB, Haynes JR, Wang R, Wempe L & Goodin MM. 2019. Host range and population survey of Spodoptera frugiperda rhabdovirus. Journal of Virology, 93 (6): e02028-18. DOI: https://doi.org/10.1128/JVI.02028-18

Sharanabasappa D, Kalleshwaraswamy CM, Asokan R, Swamy HM, Maruthi MS, Pavithra HB & Goergen G. 2018. First report of the Fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest management in Horticultural Ecosystems, 24(1): 23-29.

Shylesha AN, Jalali SK, Gupta, A, Varshney Richa, Venkatesan T, Shetty P, Ojha, R, Ganiger PC, Navik O, Subaharan K & Bakthavatsalam N. 2018. Studies on new invasive pest Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control, 32(3):1-7.

Sparks AN. 1979. A review of the biology of the fall armyworm. Florida Entomologist, 82-87. DOI: https://doi.org/10.2307/3494083

Studebaker GEG. 2021. Insecticide Recommendations for Arkansas. University of Arkansas System Cooperative Extension Publication MP144. University of Arkansas, USA.

Sun XX, Hu CX, Jia HR, Wu QL, Shen XJ, Zhao SY, Jiang YY & Wu KM. 2021. Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. J. Integr. Agric., 20 (3): 664-672. DOI: https://doi.org/10.1016/S2095-3119(19)62839-X

Szewczyk B, Rabalski L, Krol E, Sihler W & de Souza ML. 2009. Baculovirus biopesticides-safe alternative to chemical protection of plants. Embrapa Recursos Genéticos e Biotecnologia- Artigoemperiódicoindexado (ALICE).

Theze J, Bezier A, Periquet G, Drezen JM & Herniou EA. 2011. Paleozoic origin of insect large dsDNA viruses. Proceedings of the National Academy of Sciences, 108 (38): 15931-15935. DOI: https://doi.org/10.1073/pnas.1105580108

US EPA. Biopesticide Active Ingredients. Available online: https://www.epa.gov/ingredients-used-pesticide-products/ biopesticide-active-ingredients (accessed on 24 August 2021)

Varshney R, Poornesha B, Raghavendra A, Lalitha Y, Apoorva V, Ramanujam B & Pandit V. 2021. Biocontrol-based management of fall armyworm, Spodoptera frugiperda(JE Smith)(Lepidoptera: Noctuidae) on Indian Maize. Journal of Plant Diseases and Protection, 128 (1): 87-95. DOI: https://doi.org/10.1007/s41348-020-00357-3

Viteri DM, Linares AM & Flores L. 2018. Use of the entomopathogenic nematode Steinernema carpocapsae in combination with low-toxicity insecticides to control fall armyworm (Lepidoptera: Noctuidae) larvae. Fla. Entomol., 101: 327–330. DOI: https://doi.org/10.1653/024.101.0228

Wilson K. 2017. Armyworms are wreaking havoc in Southern Africa, Lancaster Environment Centre, Lancaster University, United Kingdom.

Xu P, Yang L, Yang X, Li T, Graham RI, Wu K & Wilson K. 2020. Novel partiti-like viruses are conditional mutualistic symbionts in their normal lepidopteran host, African armyworm, but parasitic in a novel host, Fall armyworm. PLoS Pathogens, 16(6): e1008467. DOI: https://doi.org/10.1371/journal.ppat.1008467

Yang X, Sun X, Zhao S, Li J, Chi X, Jiang Y & Wu K. 2019. Population occurrence, spatial distribution and sampling technique of fall armyworm Spodoptera frugiperda in wheat fields. Plant Prot., 46, 10–16. https://doi.org/10.1016/j. solener.2019.02.027.

Yang X, Wyckhuys KA, Jia X, Nie F & Wu K. 2021. Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers. Journal of Environmental Management, 282: 111949. DOI: https://doi.org/10.1016/j.jenvman.2021.111949

Zukoff S, Whitworth RJ, Michaud JP, McCornack BP & Schwarting HN. 2019. Wheat Insect Management. Kansas State University.

Rakshit S, Chandish RB, Prasad YG, Sekhar JC, Lakshmi SP, Suby SB, Jat SL, Siva Kumar G & Prasad JV. 2019. Fight against Fall armyworm Spodoptera Frugiperda (J. E. Smith). ICAR-Indian Institute of Maize Research, Ludhiana, Punjab pp 52.

Wang C & Leger RJ. 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell, 6 (5): 808-16. doi: 10.1128/EC.00409-06. DOI: https://doi.org/10.1128/EC.00409-06

Konsam J, Nongmaithem N, Dayananda S, Karam N, Senjam P, Singh TR & Haldhar SM. 2020. Fall armyworm (FAW), Spodoptera frugiperda and IPM strategies for Manipur. Biocontrol and utilization of insects for North East India edited by Haldhar SM, Dutta P, Saha RK, Nagesh M, Selvaraj K and Singh MP. Pub; DEE, CAU, Imphal: 216-225, ISBN: 978-81-938078-3-5.

Jidung L, Haldhar SM, Singh KI, Singh GM, Singh LNK & Saravanan S. 2023. Role of Trichogramma chilonis in the management of Plutella xylostella in Cabbage under Manipur condition. Journal of Eco-friendly Agriculture,18 (1): 156-160.

Jidung L, Haldhar SM, Singh KI, Ushasri B, Saravanan S & Singh LNK. 2022. Biological parameters and thermal requirements of Trichogramma chilonis reared on Corcyra cephalonica and Plutella xylostella eggs. Journal of Agriculture and Ecology, 13: 160-170. DOI: https://doi.org/10.58628/JAE-2213-116

Singh KI, Basar M and Haldhar SM. 2021. Bio-efficacy of microbial insecticides against cabbage butterfly, Pieris brassicae (Pieridae: Lepidoptera) in NEH region of India. Journal of Biological Control. Journal of Biological Control, 35(4): 227-233, DOI: 10.18311/jbc/2021/26655. DOI: https://doi.org/10.18311/jbc/2021/26655

Downloads

Published

2023-08-06

How to Cite

B Sinha, SM Haldhar, K Chakrapani, CN Nidhi, Z Ralte, B Wangkhem, & J Konsam. (2023). Microbiological resources- an alternate approach for sustainable management of fall armyworm (Spodoptera frugiperda). Journal of Agriculture and Ecology, 17, 14–25. https://doi.org/10.58628/JAE-2317-302